

NORTH ATLANTIC TREATY
ORGANISATION

 RESEARCH AND TECHNOLOGY
ORGANISATION

AC/323(IST-047)TP/45 www.rto.nato.int

RTO TECHNICAL REPORT TR-IST-047

Building Robust Systems with
Fallible Construction

(Elaboration de systèmes informatiques
robustes à l’architecture faillible)

Final Report of the Task Group IST-047/RTG-019.

Published April 2008

 Distribution and Availability on Back Cover

http://www.rto.nato.int/

NORTH ATLANTIC TREATY
ORGANISATION

 RESEARCH AND TECHNOLOGY
ORGANISATION

AC/323(IST-047)TP/45 www.rto.nato.int

RTO TECHNICAL REPORT TR-IST-047

Building Robust Systems with
Fallible Construction

(Elaboration de systèmes informatiques
robustes à l’architecture faillible)

Final Report of the Task Group IST-047/RTG-019.

http://www.rto.nato.int/

ii RTO-TR-IST-047

The Research and Technology
Organisation (RTO) of NATO

RTO is the single focus in NATO for Defence Research and Technology activities. Its mission is to conduct and promote
co-operative research and information exchange. The objective is to support the development and effective use of
national defence research and technology and to meet the military needs of the Alliance, to maintain a technological
lead, and to provide advice to NATO and national decision makers. The RTO performs its mission with the support of an
extensive network of national experts. It also ensures effective co-ordination with other NATO bodies involved in R&T
activities.

RTO reports both to the Military Committee of NATO and to the Conference of National Armament Directors.
It comprises a Research and Technology Board (RTB) as the highest level of national representation and the Research
and Technology Agency (RTA), a dedicated staff with its headquarters in Neuilly, near Paris, France. In order to
facilitate contacts with the military users and other NATO activities, a small part of the RTA staff is located in NATO
Headquarters in Brussels. The Brussels staff also co-ordinates RTO’s co-operation with nations in Middle and Eastern
Europe, to which RTO attaches particular importance especially as working together in the field of research is one of the
more promising areas of co-operation.

The total spectrum of R&T activities is covered by the following 7 bodies:
• AVT Applied Vehicle Technology Panel
• HFM Human Factors and Medicine Panel
• IST Information Systems Technology Panel
• NMSG NATO Modelling and Simulation Group
• SAS System Analysis and Studies Panel
• SCI Systems Concepts and Integration Panel

• SET Sensors and Electronics Technology Panel

These bodies are made up of national representatives as well as generally recognised ‘world class’ scientists. They also
provide a communication link to military users and other NATO bodies. RTO’s scientific and technological work is
carried out by Technical Teams, created for specific activities and with a specific duration. Such Technical Teams can
organise workshops, symposia, field trials, lecture series and training courses. An important function of these Technical
Teams is to ensure the continuity of the expert networks.

RTO builds upon earlier co-operation in defence research and technology as set-up under the Advisory Group for
Aerospace Research and Development (AGARD) and the Defence Research Group (DRG). AGARD and the DRG share
common roots in that they were both established at the initiative of Dr Theodore von Kármán, a leading aerospace
scientist, who early on recognised the importance of scientific support for the Allied Armed Forces. RTO is capitalising
on these common roots in order to provide the Alliance and the NATO nations with a strong scientific and technological
basis that will guarantee a solid base for the future.

The content of this publication has been reproduced
directly from material supplied by RTO or the authors.

Published April 2008

Copyright © RTO/NATO 2008
All Rights Reserved

ISBN 978-92-837-0049-4

Single copies of this publication or of a part of it may be made for individual use only. The approval of the RTA
Information Management Systems Branch is required for more than one copy to be made or an extract included in
another publication. Requests to do so should be sent to the address on the back cover.

RTO-TR-IST-047 iii

Table of Contents

 Page

Executive Summary and Synthèse ES-1

Chapter 1 – Background and Motivation 1

Chapter 2 – Changing Context: New Perspectives 3
2.1 Robustness Not Necessarily Correctness 3
2.2 People Are Part of the System 3
2.3 Dependability Requirements Depend on Which Stakeholder 3
2.4 Automated Correction of Failures is Not Always Feasible or Appropriate 4
2.5 Autonomic Computing, i.e. Self-Managed Systems, Has a Role 4
2.6 Rollback is Not Always Feasible or Desirable 4
2.7 Service Availability May Outweigh Correctness of Individual Service Requests 5
2.8 Software Development is Not a Single Homogeneous Activity 5
2.9 The Software Product May Not Be Homogeneous Code 5
2.10 The Development Organization May Not Be a Homogeneous Entity 5
2.11 Malicious Attacks May Be an Essential Concern 6
2.12 Fault Tolerance Awareness Needs to Be Ingrained in Stakeholders 6

Chapter 3 – Changing Context: Impact of Technology 7
3.1 Surfeit of Computing Capacity 7
3.2 Autonomic Computing 7
3.3 Virtual Machines 8
3.4 The Discipline of Software Architecture 8
3.5 Software Component Based Engineering 8
3.6 Systems of Systems 9
3.7 Web and Internet Technologies 9
3.8 Concurrent, Parallel, and Distributed Computing 10
3.9 Exception Handling 10
3.10 Non-Imperative Programming 11
3.11 Genetic and More Generally Exploratory Computation 11
3.12 Massive Datasets 11
3.13 Inadequacy of Oracles 12
3.14 Security and Privacy 12
3.15 Multimedia, Especially Time-Based Streaming Media 12
3.16 Scalability and Non-Stop Operation 12
3.17 Rate of New Releases 13

iv RTO-TR-IST-047

Chapter 4 – Conclusions and Follow-On 14

Chapter 5 – References 15

Annex A – Review of History of Task Group 17

Annex B – Task Group Members 18

Annex C – Proposed RTO Technical Programme and Budget 2004 19

Annex D – Terms of Reference 21

RTO-TR-IST-047 ES - 1

Building Robust Systems with
Fallible Construction

(RTO-TR-IST-047)

Executive Summary
This is the final report of the Task Group IST-047/RTG-019 on “Building Robust Systems with Fallible
Construction”.

The general area of study that the task group was to investigate is related to Software Fault Tolerance,
a topic that has been studied at least since 1970. Worldwide much has been learned about how to address
those problems, as they were understood at the time.

However changes in perspective as to what constitute the challenges, and changes in available and
commonplace technology, have led to a need go beyond conclusions reached in the past.

Today’s systems are typically integrated from components. These components may themselves contain
flaws, originating in specification, design or implementation errors, or in miscommunication between
different teams involved in the development. More seriously, the integration process itself may be flawed,
as when pre-existing components are used for purposes their developers had not envisioned, and the
integrators misunderstand the detailed behaviour of the components. Interoperability of systems is more
complex than correctness of a single system by itself. We have come to recognize that systems-of-systems
have emergent behaviour, because the constituent subsystems were not only never designed as part of an
integrated whole, they may actually be procured, owned and operated by independent organizations and
have operational demands for results not encompassed within, or even aligned to, the objectives of the
super-system itself. Components, and especially subsystems, often have an evolutionary life cycle
independent of the life cycle of any system they are incorporated in: what may have been true at some
point in time is not guaranteed to remain true in the future.

The Task Group focused on identifying challenges that have not been adequately resolved by traditional
Software Fault Tolerance. The Task Group did not have the resources to itself undertake research to
produce solutions, but felt that producing a catalogue of issues requiring further investigation was a useful
first step leading to their eventual resolution, and in itself was a worthwhile contribution.

Today’s NATO military systems depend on large, complex software with the need to be built and
deployed more rapidly and cheaply than traditional development methods can deliver. Moreover, because
military commanders depend on these systems, they must be more predictable and trustworthy than
traditional development methods can deliver for the available time and cost investments.

ES - 2 RTO-TR-IST-047

Elaboration de systèmes informatiques
robustes à l’architecture faillible

(RTO-TR-IST-047)

Synthèse
Ceci est le compte-rendu final du groupe de travail IST-047/RTG-019 sur « Elaboration de systèmes
informatiques robustes à l’architecture faillible ».

Le domaine général sur lequel le groupe de travail a travaillé concerne la tolérance logicielle aux pannes,
sujet étudié depuis au moins 1970. Partout dans le monde, beaucoup a été fait à l’époque pour résoudre ces
problèmes.

Toutefois, des changements de perspective sur les défis que cela représente et les changements
technologiques courants disponibles, ont abouti à la nécessité d’aller au-delà des conclusions passées.

De nos jours, dès les composants, les systèmes sont intégrés. Ces composants peuvent en eux-mêmes avoir
des défauts, qui trouvent leur source dans les caractéristiques, la conception, les erreurs de mise en œuvre,
ou une mauvaise compréhension entre les équipes de développement. Plus sérieusement, l’intégration elle-
même peut être entachée d’erreurs, comme lorsque des composants déjà existants servent à des fins non
prévues par les développeurs, sans parler des intégrateurs qui comprennent mal le comportement
spécifique de ces composants. L’interopérabilité des systèmes est plus complexe que l’exactitude d’un
seul système en lui-même. Il nous faut bien reconnaître que des systèmes-de-systèmes ont des
comportements surprenants, car leurs sous-systèmes n’ont pas été conçus comme partie intégrante d’un
tout. Ils peuvent même être achetés, détenus ou exploités par des organisations indépendantes, et être
soumis à des exigences d’exploitation non comprises dans ou même alignées sur les objectifs du super-
système lui-même. Les composants, et particulièrement les sous-systèmes, ont un cycle de vie autonome,
indépendant du cycle de vie du système dans lequel ils sont incorporés : il est nullement garanti que ce qui
a pu être vrai à un moment donné dans le temps le sera à l’avenir.

Notre groupe de travail s’est concentré sur l’identification des défis qui n’ont pas été résolus correctement
par la traditionnelle tolérance logicielle aux pannes. Notre groupe n’avait pas les ressources pour lui-même
rechercher les solutions, mais il a pensé que produire une liste des problèmes nécessitant des
investigations plus poussées était une étape utile conduisant à leur résolution éventuelle, et en lui-même
une contribution qui en valait la peine.

De nos jours les systèmes militaires de l’OTAN dépendent de gros programmes complexes, qui doivent
être élaborés et déployés plus rapidement, encore moins chers que les méthodes traditionnelles de
développement n’en sont capables. En outre, comme des commandants militaires dépendent de ces
systèmes, ces derniers doivent être plus prévisibles et fiables que les méthodes traditionnelles de
développement ne le permettent à ce jour en fonctions des investissements.

RTO-TR-IST-047 1

Chapter 1 – BACKGROUND AND MOTIVATION

The Terms of Reference for IST-047/RTG-019 (Annex D) were extremely ambitious. Quoting from the
Justification (Relevance for NATO):

“Today’s NATO military systems depend on large, complex software with the need to be built and
deployed more rapidly and cheaper than traditional development methods can deliver. Moreover, because
military commanders depend on these systems, they must be more predictable and trustworthy than
traditional development methods can deliver for the available time and cost investments. However this
requirement is not quite compatible with the traditional project oriented view of software development,
which is prevalent in today’s military acquisition methods.

Today’s systems are typically integrated from components. These components may themselves contain
flaws, originating in specification, design or implementation errors, or in miscommunication between
different teams involved in the development. More seriously, the integration process itself may be flawed,
as when pre-existing components are used for purposes their developers had not envisioned, and the
integrators misunderstand the detailed behaviour of the components. Interoperability failures between
different national systems often are of this form.”

The general area of study that the Task Group was to investigate is related to Software Fault Tolerance, a topic
that has been studied at least since 1970, when the Dependable Software Group was formed at the University
upon Newcastle-on-Tyne in the UK. Worldwide much has been learned about how to address those problems,
as they were understood at the time.

Software fault tolerance initially was construed to address design faults in software [Randell 1997].
More specifically, it addressed software that had a single thread of control, where control of that single thread
was not lost when a failure occurred (as might occur on a wild transfer, access to a bad address or execution of
a tight infinite loop) and where the failure could be recognized immediately by some oracle or by voting.
Many failures that can occur are outside this restricted model. Later the model was broadened to include any
situation where software failed to deliver its intended service, a concept labeled dependability [Laprie 1985].
This includes acknowledgement that a correct but tardy result may not be a satisfactory service. One benefit of
this broader perspective is that it encompassed not only faults of commission, where the software explicitly
did something incorrectly, but also faults of omission, where the software simply failed to handle situations
that could arise. For example, since Tymshare, GEIS, and other multi-site timesharing services of the 1960s,
distributed systems have had to handle network partitioning failures [Melliar-Smith 1998]. The initial fault is
not a software error but a communications outage, whereby a collection of distributed processes designed to
communicate with each other suddenly are partitioned into two or more non-communicating clusters.
The software must not only continue to operate in this condition, but when communications is restored, must
accomplish the often more difficult challenge of re-integrating the separate computational activities.
The software fault is to ignore the possibility of this situation and thus not have code to recognize and treat it.

Another benefit of the broader definition is that it encompasses not only failures due to design errors, but also
errors caused by input data falling outside the domain of applicability of the particular algorithm used.
For many computations, different algorithms with different domains of applicability exist, and, without
actually trying the algorithms, it may not be possible to recognize which algorithm will work for a particular
case, let alone which is best. Thus even without coding errors, a completely achievable computation may fail.
Of course data input from external sources should not be trusted to be appropriate. Patterson asserts that

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

2 RTO-TR-IST-047

68% of all outages of service on the Internet arise not from software bugs, but from inappropriate input from
humans, specifically systems operators.

Nevertheless, even with the broader perspective, many of the approaches to dependability that have been
proposed continue to have limited applicability. For example, numerous authors recommend journalizing
input to a service, so that if the service should fail, it can be rolled back and retried with the same data.
Software is typically deterministic: unless non-determinism is introduced somehow, given the same initial
state and trying a service request again using the same method with the same input will trigger exactly the
same failure again!

An early approach proposed to treat design faults was called recovery blocks. A recovery block, a unit of
program structure, enclosed each questionable computation. After the computation, an oracle was invoked to
assess whether the result was acceptable. If so, the block exited, but if not the computational state reverts to
that on entry to the block, and the computation was attempted again another way, once more subject to
assessment by the oracle. Many alternative algorithms might exist, but if none succeeds, the whole block fails.
One drawback to recovery blocks for real-time systems is that processing time is obviously unpredictable.

The perspective that failures are caused by design faults gave rise to the recognition that the problem is not
strictly technological: people are part of the problem because software developers caused those faults. This led
to another early and intuitively attractive approach, n-version implementation. The idea was that if several
disjoint teams each implemented different versions of the same specification, the dependability of the
combined suite should be better than any single version, because presumably the teams would inject
independent faults. While this can help, Knight and Leveson [Knight 1986] showed the benefit is not as great
as might be hoped, because in fact even groups implementing different specifications in different languages
make the same kinds of errors. The cause of such common mode faults is not completely understood:
are some things just innately hard for programmers to get right, or, for instance, is the phenomenon a
consequence of the way programmers are taught? Today a new source of common mode faults exists: some
software development tools are widespread, and failures in these tools can introduce similar faults into
completely unrelated software produced by completely unrelated teams!

Yet another early approach was the idea of self-checking implementations. If the designers understand what
might go wrong, and can identify how incipient failures could be detected and averted, then implementations
could be more dependable. For instance, in our experience 75% or more of the code of typical embedded
systems is concerned with recognizing and handling exceptional situations. There are two challenges for this
approach. First, from observation programmers are notoriously poor at anticipating what might go wrong with
their programs, perhaps again a consequence of the way programmers are trained. (Even some authors
explicitly writing about exception handling have overlooked plausible ways in which their designs may
potentially fail.) A second cause of “sunny day” software design and development is that budget and delivery
date pressures often cause programmers and, perhaps more seriously, their managers to give short shrift to
addressing what might go wrong, because it detracts from completing the primary functionality of the product.

An excellent summary of the state-of-the-art is [Pullum 2001]. The Task Group was aware of this work and
saw no reason to repeat it. Instead, the Task Group was chartered to investigate questions beyond the usual
formulation of the problem. The Task Group organized a research workshop, IST-064/RWS-011, to elicit the
collective wisdom of a wider community of experts. That workshop is reported separately.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 3

Chapter 2 – CHANGING CONTEXT: NEW PERSPECTIVES

Changes in perspective as to what constitute the challenges for software fault tolerance have led to a need go
beyond conclusions reached in the past. New perspectives represent different ways in which we need to think
about problems, and different aspects that a proposed solution must address. No new uniquely military
perspectives were found; on the other hand each of the perspectives discussed below occurs for military
software. What does distinguish military applications is that the relative importance of different perspectives
can change rapidly under battlespace conditions, whereas in the commercial world, priorities are more static.

2.1 ROBUSTNESS NOT NECESSARILY CORRECTNESS
The name of RTG-047 was specifically chosen to use the term “Robust” in order to make the point that our
concern is graceful degradation in the presence of failures. This in general might be a weaker criterion
than correctness, but it also may encompass other aspects that “correctness” does not necessarily address,
such as space or time resource consumption, induced delays in response, performance predictability, etc.
Our literature search turned up very little in approaches for robustness beyond the software fault tolerance
literature.

2.2 PEOPLE ARE PART OF THE SYSTEM
A good example of accepting people as part of the system is that whereas residual faults in software were
initially considered a technical problem to be addressed by strictly technical means, eventually it was
appreciated that in most situations people are also part of the system, and accommodating their foibles may
involve more than simple adjustment of technology. The early and intuitively attractive approach of n-version
implementation constituted the recognition that software development teams were the source of the errors,
which led to the proposal that multiple teams independently implementing the same software might result in
the combined product being more dependable than that of a single team.

Another good example of this has been the recognition of the importance of “user friendliness” of systems for
end users, those who work directly with screens, keyboards, mice, trackballs and so forth, entering data and
responding to displayed results. User interface design has focused largely on making such user interfaces
more intuitive, easier to learn, faster to operate, more likely to be adopted than avoided, but most of all less
error prone with mistakes easier to undo [Patterson 2003]. These advances are important because if the end
user enters the wrong input, or takes the wrong action in response to the software produced results, then the
combined human-computer system is not fault tolerant.

2.3 DEPENDABILITY REQUIREMENTS DEPEND ON WHICH STAKEHOLDER
Today’s software is larger and more complex, and the implementation, deployment, operation and
maintenance involve people in more roles than just as software developers or end users. These stakeholders
play a part in a system meeting its service objectives, and their foibles play a part in a system failing to meet
its objectives, i.e. in system failure. The roles these stakeholders play are not just coders and integrators,
they include system architects, system operators, network management, security monitors, regulators, decision
makers: indeed all those who affect or are affected by the system. These stakeholders are not homogeneous
and may have different organizational objectives. They have different levels of understanding of the system,
different opportunities to damage the system, as well as different opportunities to work around problems and

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

4 RTO-TR-IST-047

recover from damage inflicted by system incidents. Dependability is not an absolute requirement, but the level
required is relative to the needs of each stakeholder. Setting goals and capability restrictions for each of the
roles is only part of managing the impact these people can have on a system. Understanding psychological and
social factors, i.e. seeing the system as a socio-technical system, is important too, and especially important is
addressing education and training issues such as culture shift, change management and pedagogy in bringing
new people into these roles or sustaining existing staff.

2.4 AUTOMATED CORRECTION OF FAILURES IS NOT ALWAYS FEASIBLE
OR APPROPRIATE

One significant shift in objectives has been the realization that the original objective of software fault
tolerance, i.e. through diversity to automate the improvement in dependability by correcting errors, is not
always feasible or appropriate. Instead, sometimes system failures need to be regarded as inevitable,
and attention instead needs to be focused on recognizing the occurrence of a failure and providing tools to
facilitate support for human intervention in recovery of the damaged system to an operational state. The UC
Berkley and Stanford University project in Recovery-Oriented Computing has taken the lead in initiating
work in this area [Patterson 2002] [Patterson 2002A].

2.5 AUTONOMIC COMPUTING, I.E. SELF-MANAGED SYSTEMS, HAS A ROLE

Somewhat in contrast to this, there also has been a trend in recent years for systems to be self-configuring,
self-tuning, self-adapting, self-healing, etc. Various names have been applied to this initiative, a prominent
one being autonomic computing [Kephart 2003]. Autonomic systems still are differentiated from traditional
software fault tolerance in that the autonomic elements (the monitoring of system performance that is used at
run-time to drive the adjustment to the system) are done out-of-line, using sensors and monitors that are much
more sophisticated than the simple oracles or voting procedures that typify traditional software fault tolerance.
The reconfiguration or tuning procedures of autonomic systems are also more sophisticated than the simple
acceptance-or-rejection used with traditional software fault tolerance.

2.6 ROLLBACK IS NOT ALWAYS FEASIBLE OR DESIRABLE

Increasingly it is being appreciated that rollback may not always be feasible nor may it even be a desirable
approach to fault tolerance. Rollback to an earlier state is only acceptable if the failed computation had no
external effect. It is obvious for an embedded system that undoing an action such as firing a weapon is not
possible. Even mere display of information may initiate human activity that cannot be undone. Passage of
time alone may render rollback to an earlier state impossible: the external world itself has moved on, and the
saved internal state can no longer match an external state that no longer exists. Service-Oriented Architectures
(SOA), where services are obtained from third party suppliers, can exhibit similar effects. Forward Error
Correction is not simply rollback followed by replay rolling forward again with more careful reprocessing of
journalized input. Nor is Forward Error Correction simply the application of compensatory transactions to
undo deleterious effects of the failed processing. Instead Forward Error Correction involves identifying an
appropriate one of possibly many safe states from which processing can continue, and making the transition to
that state. Transactions and the all-or-none ACID properties (Atomicity, Consistency, Isolation, Durability)
may not always be relevant. Real-time video imagery provides an instructive illustrative example: processing
failures are only objectionable if the viewer notices them, but that viewer is accustomed to many acceptable
distractions.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 5

2.7 SERVICE AVAILABILITY MAY OUTWEIGH CORRECTNESS OF
INDIVIDUAL SERVICE REQUESTS

Somewhat related to this is a perspective change associated with the popular client-server model. Instead of a
computation being regarded as strictly sequential units of work, the server abstraction processes units of work
on demand. Correct processing of any individual service request (unit of work) is typically of lesser
importance to the service owner than that the server must return to a state where it can continue to accept
further service requests. Consequently, some individual service requests may get dropped on the floor.
Although service requests may arrive sequentially, there is no implication that they are necessarily processed
in that sequence, nor even that that they are processed atomically. Processing of multiple service requests may
overlap. They may not complete in the sequence that they were accepted. While this behaviour is perhaps
easiest to think about if each service request is treated as a separate thread of control, the effect can occur even
when the server executes with a single thread of control, simply because service requests may block and have
to be queued while awaiting external events, such as disk I/O, requests to other servers, or user input – and
these external events may occur in unpredictable order. If a single service request fails, it may be discarded or
rolled back, but rolling back other service requests that were successfully processed concurrently is usually
neither desirable nor necessary.

2.8 SOFTWARE DEVELOPMENT IS NOT A SINGLE HOMOGENEOUS
ACTIVITY

Abandonment of simplistic assumptions of homogeneity characterizes several categories of new perspectives.
One is that in the past the software development activity was seen as homogeneous, with the corresponding work
product being homogeneous: software. For today’s systems, many quite different activities are involved in
moving a software system from concept to operation, including software architecture, design, implementation
and packaging. Fielding software to multiple sites each with differing requirements introduces more activities
with development aspects, including installation after perhaps several levels of configuration and tailoring,
ongoing maintenance, evolution and upgrading. These different activities produce different work products and
are susceptible to different kinds of faults, but also facilitate and are limited to different mechanisms for fault
detection and correction.

2.9 THE SOFTWARE PRODUCT MAY NOT BE HOMOGENEOUS CODE

Another example of going beyond homogeneity already noted is that whereas traditionally the software
produced was treated as homogeneous, today many software products are composed of components, and that
failures can arise not only within these components but also from the integration activity that combines these
components. We noted further that large software systems may not just be made up of subsystems, but may be
systems-of-systems, where effects are accomplished by the interoperation of independently owned, procured,
and operated systems that maintain their individual purposes and responsibilities: operating organizations are
not always homogeneous [Meier 1999].

2.10 THE DEVELOPMENT ORGANIZATION MAY NOT BE A
HOMOGENEOUS ENTITY

The development organization, too, was traditionally treated as a single homogeneous entity. However,
components are often procured from different suppliers, especially when those components are Commercial-

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

6 RTO-TR-IST-047

Off-The-Shelf (COTS) products or are obtained from Open Source organizations. The lack of a single design
authority, with power to enforce design decisions throughout a system, can be drastic enough in itself, but the
fact that the particular system being integrated is only one customer in the marketplace for those components,
means that those responsible for that system have a negligible role in specification of the functionality of each
component, and have even less influence in the timing or direction of the evolution of the component.
Yet system implementation cannot remain static: evolution to track changes in the environment is essential for
long-lived systems. Reliance on detailed internal behaviour of a component cannot yield robustness. Among
other things, this has led to a not very satisfactory attempt [OMG2000] to handle software fault tolerance
through special middleware.

2.11 MALICIOUS ATTACKS MAY BE AN ESSENTIAL CONCERN

Experience with networks, especially the Internet, has unfortunately led us to another new perspective,
software today must be resistant to malicious attacks. Again this is usually an issue of avoiding faults of
omission: we must anticipate attacks that might be tried, and ensure that code is available to detect and defend
against them, as well as compensating for damage such attacks might produce.

2.12 FAULT TOLERANCE AWARENESS NEEDS TO BE INGRAINED IN
STAKEHOLDERS

The final new perspective that we believe is needed is educational, to ingrain fault sensitivity awareness into
trainee programmers, but also into other stakeholders from project managers to procurement officers to system
operators. Software today is widely held not to be dependable, but while there is need for better techniques
with wider applicability, the most glaring oversight is that available techniques are not widely known, or not
given sufficient priority to be used. Once software has been deployed to the field, improvements in
dependability are unlikely.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 7

Chapter 3 – CHANGING CONTEXT: IMPACT OF TECHNOLOGY

The impact of technology also has led to a need go beyond conclusions reached in the past. Technology can
give new options as to how to address software fault tolerance. It can also create new challenges that must be
addressed. No new uniquely military technology impacts were found; on the other hand each of the impacts of
technology discussed below occurs in military software.

We have identified four technologies that have become widely available in the past few years, each of which
offers potential for new solutions to building more robust systems.

3.1 SURFEIT OF COMPUTING CAPACITY

The first of these is the surfeit of computing capacity. Most of the history of computing has been dominated
by the need for faster, more powerful computers to address ever larger and more difficult problems, as well as
the complementary need to find ways for software to use these computers more effectively on such problems.
The flip side of the same coin has been the need for software to accomplish needed computation on the
smallest, least expensive computers practical for these computations. Today, however, for most purposes the
situation has changed: we have far more computing power than we know what to do with. To some extent this
is a consequence of the server perspective: processors configured for peak loads have unused capacity during
normal operation. In a mass production world, processor power has more to do with acquisition volume than
with individual load projections, which generally leads to overcapacity. Moreover, at the chip level excess
capacity is even more directly a consequence of reaching the limits of Moore’s law: power and heat
considerations create barriers to running the clock faster, so extra gates on the chip are used for multiple cores
and hyper-threading. Since most computations are still programmed for single thread sequential execution,
this available parallelism is underutilized. This creates an opportunity to apply that capacity for fault
tolerance, although it might have to be off the critical path of the single thread of control. To date,
most approaches to fault tolerance require use of that single thread because they are synchronous with the
primary computation. The best-known exception to this is the use of audit routines, a technique used since the
1960s in telecommunications software for on-line asynchronous verification and repair of data structures
[Willet 1982]. Audit routines are also commonly used in verification and repair of file system data structures
and main memory storage pools and heap structures. A key aspect of audit routines is that they do not require
an instantaneous snapshot of the data structures, but instead are designed to perform their validation and repair
concurrently with the main computation allocating, deallocating and modifying the data structures.

3.2 AUTONOMIC COMPUTING

The second technology impact likely to offer new options for software fault tolerance we have already
commented on: the rise of autonomic computing. Although this technology benefits from the previously
discussed surfeit of computing power, the real driver for the technology has been the increasing dependence
on 24/7 operation of large complex software systems which are implemented as commercial software products
rather than as custom designs. (Commercial software products refer to those sold in essentially identical form
to many different customers with differing individual requirements.) This means that individual customers of
the commercial software product are faced with installation activities requiring configuration and tailoring,
as well as with ongoing tuning and adapting in operation. Typically such systems are not isolated, but must
interoperate with other systems, existing and future. This installation and support effort is often not simply
algorithmic, but is highly skilled, based on experience and heuristics, including long-term observation of

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

8 RTO-TR-IST-047

system behaviour. The goal of autonomic computing is to eliminate, reduce, automate or deskill this effort
through monitoring of appropriate sensors and analyzing and acting on the observations with algorithms,
heuristics, and artificial intelligence. The choice of trouble sensors to date has been very application specific,
as have been the corrective measures. Some of this is in use today, but there are many unresolved questions.
Particularly relevant for our interest is the dependability of adaptive systems, even if the managed system
itself is dependable. Furthermore, empirical evidence from testing adaptive systems can be hard to get:
the system’s internal actions to correct what it sees as aberrant conditions can make it difficult to find external
input for black box tests to exercise particular situations.

3.3 VIRTUAL MACHINES

The third technology with impact likely to create new options for software fault tolerance is virtual machines.
This term is used in two senses, and both are relevant. The first sense is that many software systems, such as
language processors from PostScript to Java, execute through an interpreter rather than directly in the native
machine language. This interpreter constitutes a virtual machine that exposes the computational operations
and data types more directly than they can be impugned from the runtime state of compiled native machine
language programs. Software fault tolerance techniques applied to programs for this virtual machine may well
make better choices of state comparisons, recovery points, etc. The other sense in which the term virtual
machine is used is with respect to an encapsulation of the external environment of a running program.
Products such as Microsoft’s Virtual PC or VMWare’s Virtual Workstation and Virtual Server isolate running
software from its actual environment, facilitating interception of any interaction with the actual environment,
stopping the virtual processor clock to inspect or modify the state of the virtual program, save and restore
(possibly much later, and possibly on a different host) virtual program states, and support of (multiple) virtual
machines on a single host machine with quite different configuration. Companies are already commercially
offering fault tolerance solutions exploiting this technology. We expect to see many more.

3.4 THE DISCIPLINE OF SOFTWARE ARCHITECTURE

The fourth technology impact likely to offer new options for software fault tolerance is the advent of the
discipline of software architecture. Software architecture design as an identifiable activity in the software
development process, and software architecture description a distinct deliverable from that process, provide a
higher-level abstraction of the structure and behaviour of a software system. This gives a means to represent
and analyze approaches to fault tolerance that are not at the statement-by-statement level, nor even at a local
program structure level. Software architecture, for instance, can succinctly represent how a distributed
application is allocated across processors, as well as explicitly indicating replication and redundancy of data
and computational processes. Service restoration actions can be identified explicitly. Concurrency, or even
actual parallelism, can be readily addressed. Architectural styles (patterns) enable such solutions to be generic,
not tied to the design of a specific system. Service Oriented Architectures, with alternate service suppliers for
particular services, suggest possible solutions as well as posing new challenges.

We have also identified a dozen technologies that have become prominent in the past few years that present
new challenges for building robust systems.

3.5 SOFTWARE COMPONENT BASED ENGINEERING

The first technology to present new challenges is software component based engineering. The concept of
software components was first introduced at the initial workshop on software engineering [McIlroy 1969] as a

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 9

fundamental change in software development: instead of spelling out each detailed operation and
representation by writing programs, we assemble systems by integrating existing but probably not quite
matching components. This vision took over 30 years to become a marketplace reality, but today it is
widespread. In the meantime, our understanding of the potential and challenges of this approach has become
much deeper [Szyperski 2002]. We have learned, for instance, that programming language features and
practices that seemed appealing in the context of writing complete programs from scratch are less than good
ideas in the context of component based construction. Nevertheless, with the exception of FT-CORBA and
other attempts to use middleware to address fault tolerance (and those relate only to restricted classes of
failures), there appears to be very little that has been done for software fault tolerance in the context of
software components. Components themselves internally can be fault tolerant, in an attempt to be trustworthy,
but little has been studied about what internal requirements should be imposed, and what needs to be passed in
and out of the component, to best arrange for the integrated ensemble to be fault tolerant or at least robust.
Little has been studied about how to conduct the integration process to minimize the possibility of introducing
faults. This indeed was the primary objective set for the Task Group, but we had no resources to conduct
investigations, and in any case unfortunately we failed even to come up with novel ideas to investigate.
Known problems needing solutions include dealing with architectural mismatches when components come
from different suppliers and coping with component evolution that occurs independent of the evolution of the
integrated system. These occur both with use of COTS components and with use of components that are
shared with other products in a common product line.

3.6 SYSTEMS OF SYSTEMS

The second technology to present new challenges is the trend of assembling systems of systems.
The subsystems in systems-of-systems are software components, but systems-of-systems go beyond software
components because even at run-time, the subsystems maintain their separate identity, possibly even with
users other than the integrating system. The independent management of these subsystems, responding to their
various responsibilities and obligations, may not be willing to accommodate software fault tolerance
instructions from the integrating system. A request for a cold restart might be a short-term example; a request
to defer installing an upgrade might be a longer-term example. In many situations, it may be more appropriate
to regard the ensemble as a set of interoperating systems rather than as a single system-of-systems, but we
know very little about how to provide software fault tolerance for interoperating systems.

Military units often are dependent on a multitude of operational systems, which frequently have been
conceived of, procured, and are operated as independent silos. A major effort in recent years has been to
eliminate wasteful repetitiveness and reduce inconsistency by encouraging these silos to interoperate.
The scale of the problem causes some putative solutions to be counterproductive. One US Army division
reported depending on over 200 separate systems, and had serious training issues with the fact that these silos
each installed new releases on its own schedule. The effort and coordination to synchronize upgrade cycles of
less than 10 of these was enormous – but in the end it was recognized that all that had been accomplished was
to create a bigger and more inflexible silo [Barr 2001].

3.7 WEB AND INTERNET TECHNOLOGIES

Internet and Web technologies present the third set of new challenges. The Internet has introduced many new
paradigms, from how applications are deployed by download at run-time from remote servers to the use of
XML as a universal representation of arbitrary data structures and their content. Use of HTTP and HTML is
widespread, but these standards have limitations and indeed deficiencies as the rise of AJAX demonstrates.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

10 RTO-TR-IST-047

Proxy servers, mirroring and other forms of caching introduce replicates of data that rollback recovery
schemes must ensure get refreshed. Multimedia, especially time-based streaming media with separate
synchronized streams, poses non-standard issues for fault tolerance. Search-based computations, possibly
incorporating text analysis or link analysis, depend on the instantaneous state of the universe of Internet
subscribers, as do content-based applications. Client-server and multi-tier architectures are common, with
lower level services possibly provided by third parties (which with object request brokers and with service
discovery through SOAP, WSDL and UDDI may be unknowable and not reproducible). To meet performance
demands, service requests are often performed out of order, with unrelated service requests intervening if a
server becomes available when a particular request blocks during processing. Viruses and pro-active spyware
can modify the intended execution history of software. These technologies may invalidate assumptions
underlying approaches to software fault tolerance. At the very least, they complicate the implementation of
many approaches. Moreover, it is not obvious how to recognize some of the failures that may occur or what to
do about them.

3.8 CONCURRENT, PARALLEL, AND DISTRIBUTED COMPUTING

Concurrency, indeed actual parallelism, has become ubiquitous today, as has distributed computing, and this
constitutes the fourth set of challenges. The novelty for fault tolerance is two-fold. First, new failure modes
must be handled, with new criteria for what constitutes an acceptable resolution. Network partitioning failures,
as described earlier, illustrate this. Another illustration is given by considering how to restart the multiple
processes of a failed distributed application [Shapiro 2004]. Second, fault tolerance solutions that mimic what
is appropriate for sequential computation may be unacceptable, because they impose lockstep synchronization
on processes that prevent the very performance enhancement opportunities that led to the use of multiple
processors in the first place.

A powerful abstraction that has been put forward to address concurrency challenges for software fault
tolerance is Coordinated Atomic Actions (CA) [Randell 1995]. CA is a unified scheme for coordinating
complex concurrent activities and supporting error recovery between multiple interacting components in a
distributed object system. Conversations (enhanced with concurrent exception handling: processes must be
able to throw exceptions in other processes) are used to control cooperative concurrency and to implement
coordinated error recovery whilst transactions are used to maintain the consistency of shared resources in the
presence of failures and competitive concurrency. CA have often been used to establish all-or-none semantics
– which we have already noted may not always be desired. Over more than ten years of research,
this abstraction has been shown to be applicable to a wide range of distributed and concurrent situations,
including web service implementations. What does not appear to have been studied is the downside of this
abstraction: what are its limitations and what are its disadvantages?

3.9 EXCEPTION HANDLING

Fault tolerance is all about how to handle situations that should not occur in normal processing. Treating such
situations is called exception handling. The seminal paper on exception handling dates from the mid-70s
[Goodenough 1975], although there has been considerable work since. Exception handling was not part of
early programming languages, so support for it had to be provided by operating systems or run-time libraries.
Today, however, many languages have standardized on a common abstraction for exception handling: the try,
throw and catch syntax and semantics. Unfortunately, relative to what was described in the seminal work,
this abstraction is deficient. The common abstraction appears to take the position that exceptions represent
software failures, perhaps unexpected, and that the only response is to abandon part of the computation,

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 11

perhaps popping multiple levels off the activation stack. (The implicit release of storage can impose
unpredictable run-time overheads.) That is, they have chosen the termination model, and ignored the
resumption model. This is indeed one, but only one, of the positions suggested in the seminal work. At least as
important is the idea that the normal path of execution should for clarity and performance only contain the
dominant sequence of computation, and that all others, which will be abnormal in the sense of less frequent
but which are by no means erroneous, should be expressed as exceptions. Rescaling a computation only if
necessary to avoid overflow might be a simple example; a document formatter only doing widow processing
when the text flow reaches the end of page might be another. IEEE floating-point arithmetic was specifically
designed for the resumption model. In these cases discarding partial results is normally not desirable,
moreover, when an exception is thrown, we need operand and state information as to what caused the
exception so that the computed results can be adjusted and computation continued. Exceptions that return
parameters are recommended in the seminal work, but recent languages exception mechanisms have
disregarded this altogether. Exception handling in the presence of multiple processes, multiple threads, or
other concurrency is simply a mess. Consequently, despite current language provisions, it is often still
necessary for exception handling to be supported by operating systems, run-time libraries, or inline code.

3.10 NON-IMPERATIVE PROGRAMMING

Most techniques for software fault tolerance assume an imperative programming model and depend on, indeed
modify, explicit control flow. These techniques then do not accommodate software expressed in a non-
imperative paradigm: declarative programming languages, implicit invocation, data-driven synchronization, and
tuple spaces for example.

3.11 GENETIC AND MORE GENERALLY EXPLORATORY COMPUTATION

Genetic and exploratory computations are optimization techniques that search large candidate spaces in
analogy to biological population processes. Genetic and exploratory programming apply this optimization
approach to the space of programs for computing a particular result. Genetic and exploratory computations
exhibit the opposite problem to non-imperative programming: the algorithms can be intrinsically self-healing,
so the appropriate response to many errors is simply to let the algorithm take care of any error. There is some
evidence that the algorithms produced by genetic or exploratory programming are more robust against failures
of subcomputations than typical algorithms for the same problems manually produced by top down design.
We could imagine formulating a desired computation as the objective of genetic or exploratory computation to
take advantage of this robustness. Approaches to making software-programmed hardware most robust to
failure have been demonstrated using field-programmable gate arrays chips that are genetically programmed
and able to survive and/or recover from radiation-based faults [Lohn 2006].

3.12 MASSIVE DATASETS

We have already noted that web-based search computations can depend on datasets so vast, and in such a
continuous state of flux, that rollback and retry are inconceivable. Datasets not shared on the web can exhibit this
too. They can be so large that exhaustive examination in response to a query is infeasible, and computation is
only practical by caching (memoizing) partial results of previous computations and by doing speculative partial
computations. Building on these may not produce results corresponding to any consistent state of the full dataset,
but may in a reasonable period of time produce results that are good enough. Data mining might be a typical
application.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

12 RTO-TR-IST-047

3.13 INADEQUACY OF ORACLES

A fundamental assumption of many approaches to software fault tolerance is that there is an oracle that
immediately identifies incorrect results. Unfortunately, for many computations this assumption is unrealistic.
If the result is a data structure more extensive than a simple scalar (e.g. a large matrix), evaluation of the
oracle may be expensive and itself potentially error prone. Indeed, for some computations leading to an
extensive result (e.g. a GIS system producing a map) it is not clear what would constitute a meaningful
criterion of correctness (derived maps depend on the quality of the geospatial data in the layers being
combined, and such data typically has questions as to its accuracy, resolution, timeliness and pedigree).
Internal consistency checks may be used for validation, but don’t guarantee the result as a whole. Obtaining
alternative results for comparison or plausibility checks is sometimes possible, but this may involve delay
which not only may raise questions as to how comparable these alternates really are, but casts the whole
all-or-none semantics into question, as service must continue to be provided after the results first become
available. Voting also is only straightforward for simple scalar results: how big a difference is too big, and is
arithmetic differencing meaningful on complex data structures. The notion of autonomic elements applying
multiple trouble sensors to evaluate and analyze plausibility seems much more reasonable. Furthermore,
in many systems there is no single result produced in isolation, instead there is a continuously evolving result
as the input conditions change. Such systems seem more amenable to closed loop management, where steering
is applied manually or autonomously to reduce error signals at the trouble sensors.

3.14 SECURITY AND PRIVACY

Security and privacy have become big issues for many software systems today, and these are qualities for
which it seems particularly unlikely that satisfactory oracles to identify failures can be found or that any
failure detection will be immediate. Remedial action when failure has been detected is also not obvious:
rollback and retry would seem singularly inappropriate.

3.15 MULTIMEDIA, ESPECIALLY TIME-BASED STREAMING MEDIA

Many modern software systems deal with multimedia, especially time-based streaming media. It is
commonplace for several streams to need to be synchronized: video and sound, speech perhaps in each of
several simultaneous translations, for example. Here too characterizing what constitutes a failure is not
obvious, finding a suitable oracle to detect it is unlikely, and identifying suitable remediation beyond dropping
frames and re-synching is inordinately challenging.

3.16 SCALABILITY AND NON-STOP OPERATION

Many critical systems today, especially military systems, must operate non-stop 24/7. It is not unusual that
such systems must be scalable; both in that instances of such a system need to be deployed in situations with
widely different demand, but also that it is not uncommon for demand to grow over time, perhaps even to
grow rapidly. Fault tolerance and robustness is particularly important for such systems, yet the non-stop
operation and the scale and the need to grow make it particularly hard to apply current failure detection and
remediation techniques.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 13

3.17 RATE OF NEW RELEASES

The final technology to present a new challenge for robustness is simply the turmoil of continuous updates
from different suppliers. We earlier alluded to the distress this caused a US Army unit with respect to training.
The Web is never in a consistent or reproducible state, which makes interoperability a nightmare,
but nevertheless crucial. We normally try to engineer systems for a predictable static state, but this is more
like riding a living, writhing monster. We need new approaches to avoid it bucking us off!

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

14 RTO-TR-IST-047

Chapter 4 – CONCLUSIONS AND FOLLOW-ON

IST-047/RTG-019 did not achieve its objective of discovering solutions to the challenges of building robust
systems with construction known to be fallible. Nevertheless, we feel that we have performed a useful service
in scoping out the challenges, especially in identifying new perspectives from which putative solutions will be
viewed, and current technologies that may support new approaches but certainly represent a richer class of
problems to address. The next step for researchers and vendors worldwide will be to fit these challenges into a
research agenda to tackle the challenges, and come up with products and services that take them into account.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 15

Chapter 5 – REFERENCES

[Barr 2001] Barr, B. “Role of Test and Evaluation in Evolutionary Procurement” in NATO NC3A Symposium
Evolutionary Procurement of Information Systems, EPIS 2000, the Hague, 28-30 March 2001.

[Cristian 1991] Cristian, F. “Understanding Fault-Tolerant Distributed Systems”, CACM Vol. 34, No. 2, 1991.

[Goodenough 1975] Goodenough, J.B. “Exception handling: Issues and a proposed notation”, CACM Vol. 18,
No. 12, 1975, pp. 683-696.

[Kephart 2003] Kephart, J.O. and Chess, D.M. “The Vision of Autonomic Computing”, IEEE Computer,
January 2003, pp. 41-50.

[Knight 1986] Knight, J.C. and Leveson, N.G. “An Experimental Evaluation of the Assumption of
Independence in Multi-Version Programming,” IEEE Transactions on Software Engineering, Vol. SE-12,
No. 1, January 1986, pp. 96-109.

[Laprie 1985] Laprie, J.C. “Dependable Computing and Fault Tolerance: Concepts and terminology” in Proc.
15th IEEE Int. Symposium on Fault-Tolerant Computing (FTCS-15), Ann Arbor, Michigan, 1985, pp. 2-11.

[Lohn 2006] Lohn, J.D. and Larchev, G. “Evolutionary Based Techniques for Fault Tolerant Field
Programmable Gate Arrays,” Proc. 2006 Space Mission Challenges for Information Technology, June 2006.

[Meier 1999] Meier, M.W. “Architecting Principles for Systems-of-Systems”, Systems Engineering, 2:1,
1999.

[McIlroy 1969] McIlroy, M.D. “Mass produced Software Components”, in P. Naur and B. Randell, Software
Engineering, Report on a Conference Sponsored by the NATO Science Committee, Garmisch Germany 7th to
11th October, 1968, Scientific Affairs Division, NATO Brussels, 1969, pp. 138-155.

[Melliar-Smith 1998] Melliar-Smith, P.M. and Moser, L.E. “Surviving Network Partitioning”, IEEE
Computer Vol. 31, No. 3, 1998, pp. 62-68.

[OMG 2000] Object Management Group, Fault Tolerant Corba: Modifications to Corba Core Specifications,
2000 http://www.omg.org/docs/ptc/00-03-05.pdf.

[Patterson 2002] Patterson, D.A., Brown, A., Broadwell, P., Candea, G., Chen, M., Cutler, J., Enriquez, P.,
Fox, A., Kiciman, E., Merzbacher, M., Oppenheimer, D., Sastry, N., Tetzlaff, W., Traupman, J. and Treuhaft, N.
Recovery-Oriented Computing (ROC): Motivation, Definition, Techniques, and Case Studies. UC Berkeley
Computer Science Technical Report UCB//CSD-02-1175, March 15, 2002.

[Patterson 2002A] Patterson, D.A. “Recovery Oriented Computing: A New Research Agenda for a New
Century”, HPCA 8 keynote, 2002, www.cs.berkley.edu/~patterson/talks/keynote.html.

[Patterson 2003] Brown, A. and Patterson, D.A. “Undo for Operators: Building an Undoable E-mail Store”.
In Proceedings of the 2003 USENIX Annual Technical Conference, San Antonio, TX, June 2003 (Best Paper
Award).

http://www.omg.org/docs/ptc/00-03-05.pdf
http://www.cs.berkley.edu/~patterson/talks/keynote.html

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

16 RTO-TR-IST-047

[Pullum 2001] Pullum, L.L. Software Fault Tolerance Techniques and Implementation, Artech House
Publishers, 2001.

[Randell 1995] Randell, B., Romanovsky, A., Rubira, C., Stroud, R., Wu, Z. and Xu, J. “From Recovery
Blocks to Coordinated Atomic Actions” In Predictably Dependable Computer Systems Eds. B. Randell, J.-C.
Laprie et al., Springer-Verlag, 1995, pp. 87-101.

[Randell 1997] Randell, B. “Dependability Research at Newcastle”, 1997, http://www.cs.ncl.ac.uk/events/
anniversaries/40th/webbook/dependability/index.html.

[Shapiro 2004] Shapiro, M.W. “Self-Healing in Modern Operating Systems”, ACM Queue, Vol. 2, No. 9,
December 2004, pp. 67-75.

[Szyperski 2002] Szyperski, C. Component Software: Beyond Object-Oriented Programming (2nd Edition),
Addison-Wesley Professional, 2002.

[Willet 1982] Willet, R.J. “Notes from Design of Recovery Strategies for a Fault-Tolerant No. 4 ESS”, BSTJ
Vol. 61, No. 10, 1982.

http://www.cs.ncl.ac.uk/events/�anniversaries/40th/webbook/dependability/index.html
http://www.cs.ncl.ac.uk/events/�anniversaries/40th/webbook/dependability/index.html

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 17

Annex A – REVIEW OF HISTORY OF TASK GROUP

The proposal to initiate an Exploratory Team on this topic arose in spring 2002 during a discussion at the
IST Panel 9th Panel Business Meeting. The initial draft TAP and ToR were submitted for consideration at the
22/23 September 2002 at the IST Panel 10th PBM, but it appears no ET was formally approved. Instead, the Task
Group IST-047/RTG-019 was approved October 2003 for immediate start as follow-on to an earlier Task Group.

The successful kick-off meeting was held at the RTA in Paris, March 11 and 12, 2004. The Tap and ToR were
revised, and a Program of Work agreed to. That was the last physical meeting of the whole Task Group.
An informal meeting of a subset of the Task Group took place 1 October 2004 in den Haag. Attempted
meetings in Rome and Athens in 2005 and Orlando in spring 2006 failed to take place because of lack of
travel funds. Nevertheless, the Task Group continued its activities by electronic mail.

The Task Group organized the successful IST-064/RWS-011 Workshop November 2006 in Prague. This
workshop is reported separately.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

18 RTO-TR-IST-047

Annex B – TASK GROUP MEMBERS

CANADA (CHAIRMAN)

 Dr. W. Morven GENTLEMAN Tel. +1 902 494 2652
 Global Information Networking Institute Fax +1 902 492 1517
 Dalhousie University E/M: Morven.Gentleman@dal.ca
 6050 University Avenue
 Halifax, Nova Scotia B3H 1W5

CZECH REPUBLIC

 Dr. Milan SNAJDER Tel. +420 (2) 55 70 87 53
 Military Technical Institute of Air Force Fax +420 (2) 55 70 84 53
 VTULaPVO E/M milan.snajder@vtul.cz
 Mladoboleslavska 944
 19721 Prague 97

NETHERLANDS

 Mr. Yves Van de VIJVER Tel. +31 (20) 511 36 71
 National Aerospace Laboratory Fax +31 (20) 511 32 10
 Anthony Fokkerweg 2 E/M vyver@nlr.nl
 PO Box 90502
 1006 BM Amsterdam

UNITED KINGDOM
 Dr. Peter POPOV Tel. +44 (0) 20 7040 8963
 Center for Software Reliability Fax +44 (0) 20 7040 8585
 City University E/M ptp@csr.city.ac.uk
 Northampton Square
 London EC1V 0HB

UNITED STATES

 Dr. Jason LOHN Tel. +1 (650) 604-5138
 MS 269-1 Fax +1 (650) 604-3594
 NASA Ames Research Center E/M jlohn@arc.nasa.gov
 Mountain View, CA

mailto:Morven.Gentleman@dal.ca
mailto:milan.snajder@vtul.cz
mailto:vyver@nrl.nl
mailto:jlohn@arc.nasa.gov
mailto:ptp@csr.city.ac.uk
mailto:jlohn@arc.nasa.gov

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 19

Annex C – PROPOSED RTO TECHNICAL
PROGRAMME AND BUDGET 2004

ACTIVITY Task Group 03/2003
Activity REF.
Number IST-047

BUILDING ROBUST SYSTEMS WITH
FALLIBLE CONSTRUCTION 01/2004

PRINCIPAL MILITARY
REQUIREMENTS 1 2 5 6 NU 12/2006

MILITARY FUNCTIONS 1 2 3 4 7 9
PANEL AND COORDINATION IST (Information Systems Technology) NC3A
LOCATION AND DATES Participating Nations, Semi-annually P-I
PUBLICATION DATA TR (Final Report) 03/2007 200 NU
KEYWORDS Alternate System Integration Components Redundancy

Development Methodology Plausibility Oracle Data Fusion

C.1 BACKGROUND AND JUSTIFICATION (Relevance to NATO)

Today’s NATO military systems depend on large, complex software with the need to be built and deployed
more rapidly and cheaper than traditional development methods can deliver. Moreover, because military
commanders depend on these systems, they must be more predictable and trustworthy than traditional
development methods can deliver for the available time and cost investments. However this requirement is not
quite compatible with the traditional project oriented view of software development, which is prevalent in
today’s military acquisition methods.

Today’s systems are typically integrated from components. These components may themselves contain flaws,
originating in specification, design or implementation errors, or in miscommunication between different teams
involved in the development. More seriously, the integration process itself may be flawed, as when pre-
existing components are used for purposes their developers had not envisioned, and the integrators
misunderstand the detailed behaviour of the components. Interoperability failures between different national
systems often are of this form.

Experience with interoperating commercial products, especially in the context of the Internet, indicates that
robustness to fallible components and fallible integration can be achieved without centralized predictive
coordination. Appropriate software architecture, redundancy in functional components, and enforcement of
critical interface standards appear to be key elements of success. Improved registry and plug-and-play
concepts can help automate integration and reduce configuration problems.

If we are to try to build infallible systems with fallible construction methods, there is a need to review the
advances in software development in the commercial market. There is also a need to evaluate the requirements
of military software development, bring forth lessons to be learned and to identify areas of research and draw
projections especially for the procurement community.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

20 RTO-TR-IST-047

C.2 OBJECTIVE(S)

Although the commercial community has been very active in such new methods we do not see any
considerable projection of that activity on the military side, where it is most needed. The commercial
marketplace has long been dealing with independently developed interoperable products, where it has been
recognized that each product will be upgraded across many releases over its lifetime, in order to meet
changing requirements and to take advantage of new technologies.

C.3 TOPICS TO BE COVERED

• Choices for software architecture for robustness • Coping with component evolution
• Integration process and tools • Aids to retraining users
• Critical interface standards • Scaffolding reuse
• Interoperability with complementary or related

products
• Regression tests, integration tests,

integrity testing, consistency testing
• Empirical behaviour investigation through

testing
• Project metric tracking

• Oracles to ascertain plausibility of results • Implications for cultural change

C.4 DELIVERABLES AND/OR END PRODUCT

Technical Report (TR): Final Report at the end of the mandate of the Task Group.

C.5 TECHNICAL TEAM LEADER AND LEAD NATION

Recommended Team Leader: Morven GENTLEMAN, CAN.

Recommended Lead Nation: CAN.

C.6 NATIONS WILLING TO PARTICIPATE

CAN, GBR, NLD and USA.

C.7 NATIONAL AND/OR NATO RESOURCES NEEDED (Physical and
Non-Physical Assets)

Members of the Task Group will be experts in software development and acquisition.

Host Nations will provide meeting arrangements. No special needs are foreseen except for Internet access.

C.8 RTA RESOURCES NEEDED (e.g. Consultant Funding)

Support could be asked if needed for one of two Consultants per year.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 21

Annex D – TERMS OF REFERENCE

NATO AC/323 Information Systems Technology Panel
Task Group on Building Robust Systems with Fallible Construction

(IST-047/RTG-019)

D.1 ORIGIN

A) Background
The idea for an Exploratory Team on Infallible Systems from Fallible Components was first proposed in the
ninth IST Panel meeting in 2002. From consultation with interested parties, it became clear that the integration
process itself is at least as fallible as the components. This was the Achilles’ heel of earlier investigations,
such as recovery blocks in the 1970’s Moreover, setting the objective as high as “infallibility” could lead to
concentration on techniques impractical in practice, whereas a more modest goal might be entirely satisfactory
and achievable. This ToR takes these comments into account.

B) Justification (Relevance for NATO)
Today’s NATO military systems depend on large, complex software with the need to be built and deployed
more rapidly and cheaper than traditional development methods can deliver. Moreover, because military
commanders depend on these systems, they must be more predictable and trustworthy than traditional
development methods can deliver for the available time and cost investments. However this requirement is not
quite compatible with the traditional project oriented view of software development, which is prevalent in
today’s military acquisition methods.

Today’s systems are typically integrated from components. These components may themselves contain flaws,
originating in specification, design or implementation errors, or in miscommunication between different teams
involved in the development. More seriously, the integration process itself may be flawed, as when
pre-existing components are used for purposes their developers had not envisioned, and the integrators
misunderstand the detailed behaviour of the components. Interoperability failures between different national
systems often are of this form.

Experience with interoperating commercial products, especially in the context of the Internet, indicates that
robustness to fallible components and fallible integration can be achieved without centralized predictive
coordination. Appropriate software architecture, redundancy in functional alternatives, and enforcement of
critical interface standards appear to be key elements of success. Improved registry and plug-and-play concepts
can help automate integration and reduce configuration problems.

If we are to try to build infallible systems with fallible construction methods, there is a need to review the
advances in software development in the commercial market. There is also a need to evaluate the requirements
of military software development, bring forth lessons to be learned and to identify areas of research and draw
projections especially for the procurement community.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

22 RTO-TR-IST-047

D.2 OBJECTIVES

1) Area of Research and Scope
Although the commercial community has been very active in such new methods we do not see any
considerable projection of that activity on the military side, where it is most needed. The commercial
marketplace has long been dealing with independently developed interoperable products, where it has been
recognized that each product will be upgraded across many releases over its lifetime, in order to meet
changing requirements and to take advantage of new technologies.

2) The Specific Goals and Topics to be Covered by the Task Group are:
• Choices for software architecture for robustness;
• Integration process and tools;
• Critical interface standards;
• Interoperability with complementary or related products;
• Empirical behaviour investigation through testing;
• Oracles to ascertain plausibility of results;
• Coping with component evolution;
• Aids to retraining users;
• Regression tests, integration tests, integrity testing, consistency testing;
• Scaffolding reuse;
• Project metric tracking; and
• Implications for cultural change.

3) Expected End Products and/or Deliverables
Final Report.

4) Overall Duration of the Task Group
The Technical Group lifetime is proposed for three years.

D.3 RESOURCES

A) Membership
The Task Group is expected to deliberate on the specific topics given above, at IST Panel meetings and over
the Internet, in 1 – 2 day meetings, twice a year.

Recommended Team Leader: Dr. Morven GENTLEMAN (CAN). Recommended Lead Nation: Canada.
(A final Leader will be elected during the first meeting of the Task Group).

Initial list of Nations that have expressed a willingness to participate: CAN, GBR, NLD and USA.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

RTO-TR-IST-047 23

B) National and/or NATO Resources Needed
Each participating nation is expected to provide at least .2 person-years/year of effort towards the goals of this
RTG, plus funds to allow their experts to travel to two RTG meetings per year. Members of the Task Group
will be experts in software development and acquisition.

In addition, Internet access is required for unclassified information exchange and collaborative activities.
Identified RTA resources would be limited to standard support for publishing the final report. RTA support
for consultants may also be requested. Support could be asked if needed for one or two Consultants per year.

D.4 SECURITY CLASSIFICATION LEVEL

Recommended for the activity: NATO Unclassified and commercially confidential.

Recommended for the publication: NATO Unclassified.

D.5 PARTICIPATION BY PARTNER NATIONS

Partner Nations are invited to participate in the Technical Team.

D.6 LIAISONS

Liaison with NATO C3A would enhance the work of the Task Group.

BUILDING ROBUST SYSTEMS WITH FALLIBLE CONSTRUCTION

24 RTO-TR-IST-047

RTO-TR-IST-047

REPORT DOCUMENTATION PAGE

1. Recipient’s Reference 2. Originator’s References 3. Further Reference

4. Security Classification
of Document

 RTO-TR-IST-047
AC/323(IST-047)TP/45

ISBN
978-92-837-0049-4

UNCLASSIFIED/
UNLIMITED

5. Originator Research and Technology Organisation
North Atlantic Treaty Organisation
BP 25, F-92201 Neuilly-sur-Seine Cedex, France

6. Title
Building Robust Systems with Fallible Construction

7. Presented at/Sponsored by

Final Report of the Task Group IST-047/RTG-019.

8. Author(s)/Editor(s) 9. Date

Multiple April 2008

10. Author’s/Editor’s Address 11. Pages

Multiple 36

12. Distribution Statement

There are no restrictions on the distribution of this document.
Information about the availability of this and other RTO
unclassified publications is given on the back cover.

13. Keywords/Descriptors

Computer architecture
Computer programs
Design
Fault tolerance

Integrated systems
Reliability
Software development
System of systems

14. Abstract

The Task Group focused on identifying challenges that have not been adequately resolved by
traditional Software Fault Tolerance. The Task Group did not have the resources to itself undertake
research to produce solutions, but felt that producing a catalogue of issues requiring further
investigation was a useful first step leading to their eventual resolution, and in itself was a
worthwhile contribution.

 RTO-TR-IST-047

NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION

BP 25

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE
Télécopie 0(1)55.61.22.99 • E-mail mailbox@rta.nato.int

DIFFUSION DES PUBLICATIONS

RTO NON CLASSIFIEES

Les publications de l’AGARD et de la RTO peuvent parfois être obtenues auprès des centres nationaux de distribution indiqués ci-dessous. Si vous
souhaitez recevoir toutes les publications de la RTO, ou simplement celles qui concernent certains Panels, vous pouvez demander d’être inclus soit à
titre personnel, soit au nom de votre organisation, sur la liste d’envoi.
Les publications de la RTO et de l’AGARD sont également en vente auprès des agences de vente indiquées ci-dessous.
Les demandes de documents RTO ou AGARD doivent comporter la dénomination « RTO » ou « AGARD » selon le cas, suivi du numéro de série.
Des informations analogues, telles que le titre est la date de publication sont souhaitables.
Si vous souhaitez recevoir une notification électronique de la disponibilité des rapports de la RTO au fur et à mesure de leur publication, vous pouvez
consulter notre site Web (www.rto.nato.int) et vous abonner à ce service.

CENTRES DE DIFFUSION NATIONAUX

ALLEMAGNE HONGRIE PORTUGAL
Streitkräfteamt / Abteilung III Department for Scientific Analysis Estado Maior da Força Aérea
Fachinformationszentrum der Bundeswehr (FIZBw) Institute of Military Technology SDFA – Centro de Documentação
Gorch-Fock-Straße 7, D-53229 Bonn Ministry of Defence Alfragide
 P O Box 26 P-2720 Amadora

BELGIQUE H-1525 Budapest
Royal High Institute for Defence – KHID/IRSD/RHID REPUBLIQUE TCHEQUE
Management of Scientific & Technological Research ISLANDE LOM PRAHA s. p.

for Defence, National RTO Coordinator Director of Aviation o. z. VTÚLaPVO
Royal Military Academy – Campus Renaissance c/o Flugrad Mladoboleslavská 944
Renaissancelaan 30, 1000 Bruxelles Reykjavik PO Box 18
 197 21 Praha 9

CANADA ITALIE
DSIGRD2 – Bibliothécaire des ressources du savoir General Secretariat of Defence and ROUMANIE
R et D pour la défense Canada National Armaments Directorate Romanian National Distribution
Ministère de la Défense nationale 5th Department – Technological Centre
305, rue Rideau, 9e étage Research Armaments Department
Ottawa, Ontario K1A 0K2 Via XX Settembre 123 9-11, Drumul Taberei Street

 00187 Roma Sector 6
DANEMARK 061353, Bucharest

Danish Acquisition and Logistics Organization (DALO) LUXEMBOURG
Lautrupbjerg 1-5, 2750 Ballerup Voir Belgique ROYAUME-UNI
 Dstl Knowledge Services

ESPAGNE NORVEGE Information Centre
SDG TECEN / DGAM Norwegian Defence Research Building 247
C/ Arturo Soria 289 Establishment Dstl Porton Down
Madrid 28033 Attn: Biblioteket Salisbury

 P.O. Box 25 Wiltshire SP4 0JQ
ETATS-UNIS NO-2007 Kjeller

NASA Center for AeroSpace Information (CASI) SLOVENIE
7115 Standard Drive PAYS-BAS Ministry of Defence
Hanover, MD 21076-1320 Royal Netherlands Military Central Registry for EU and
 Academy Library NATO

FRANCE P.O. Box 90.002 Vojkova 55
O.N.E.R.A. (ISP) 4800 PA Breda 1000 Ljubljana
29, Avenue de la Division Leclerc
BP 72, 92322 Châtillon Cedex POLOGNE TURQUIE
 Centralny Ośrodek Naukowej Milli Savunma Bakanlığı (MSB)

GRECE (Correspondant) Informacji Wojskowej ARGE ve Teknoloji Dairesi
Defence Industry & Research General Al. Jerozolimskie 97 Başkanlığı

Directorate, Research Directorate 00-909 Warszawa 06650 Bakanliklar
Fakinos Base Camp, S.T.G. 1020 Ankara
Holargos, Athens

AGENCES DE VENTE
NASA Center for AeroSpace The British Library Document Canada Institute for Scientific and

Information (CASI) Supply Centre Technical Information (CISTI)
7115 Standard Drive Boston Spa, Wetherby National Research Council Acquisitions
Hanover, MD 21076-1320 West Yorkshire LS23 7BQ Montreal Road, Building M-55
ETATS-UNIS ROYAUME-UNI Ottawa K1A 0S2, CANADA
Les demandes de documents RTO ou AGARD doivent comporter la dénomination « RTO » ou « AGARD » selon le cas, suivie du numéro de série
(par exemple AGARD-AG-315). Des informations analogues, telles que le titre et la date de publication sont souhaitables. Des références
bibliographiques complètes ainsi que des résumés des publications RTO et AGARD figurent dans les journaux suivants :

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements & Index (GRA&I)
STAR peut être consulté en ligne au localisateur de ressources publié par le National Technical Information Service
uniformes (URL) suivant: http://www.sti.nasa.gov/Pubs/star/Star.html Springfield
STAR est édité par CASI dans le cadre du programme Virginia 2216
 NASA d’information scientifique et technique (STI) ETATS-UNIS
STI Program Office, MS 157A (accessible également en mode interactif dans la base de
NASA Langley Research Center données bibliographiques en ligne du NTIS, et sur CD-ROM)
Hampton, Virginia 23681-0001
ETATS-UNIS

mailto:mailbox@rta.nato.int
http://www.rto.nato.int/
http://www.sti.nasa.gov/Pubs/star/Star.html

NORTH ATLANTIC TREATY ORGANISATION RESEARCH AND TECHNOLOGY ORGANISATION

BP 25

F-92201 NEUILLY-SUR-SEINE CEDEX • FRANCE
Télécopie 0(1)55.61.22.99 • E-mail mailbox@rta.nato.int

DISTRIBUTION OF UNCLASSIFIED
RTO PUBLICATIONS

AGARD & RTO publications are sometimes available from the National Distribution Centres listed below. If you wish to receive all RTO reports,
or just those relating to one or more specific RTO Panels, they may be willing to include you (or your Organisation) in their distribution.
RTO and AGARD reports may also be purchased from the Sales Agencies listed below.
Requests for RTO or AGARD documents should include the word ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial number. Collateral
information such as title and publication date is desirable.
If you wish to receive electronic notification of RTO reports as they are published, please visit our website (www.rto.nato.int) from where you can
register for this service.

NATIONAL DISTRIBUTION CENTRES
BELGIUM HUNGARY PORTUGAL

Royal High Institute for Defence – KHID/IRSD/RHID Department for Scientific Analysis Estado Maior da Força Aérea
Management of Scientific & Technological Research Institute of Military Technology SDFA – Centro de Documentação

for Defence, National RTO Coordinator Ministry of Defence Alfragide
Royal Military Academy – Campus Renaissance P O Box 26 P-2720 Amadora
Renaissancelaan 30 H-1525 Budapest
1000 Brussels ROMANIA

 ICELAND Romanian National Distribution
CANADA Director of Aviation Centre

DRDKIM2 – Knowledge Resources Librarian c/o Flugrad, Reykjavik Armaments Department
Defence R&D Canada 9-11, Drumul Taberei Street
Department of National Defence ITALY Sector 6, 061353, Bucharest
305 Rideau Street, 9th Floor General Secretariat of Defence and
Ottawa, Ontario K1A 0K2 National Armaments Directorate SLOVENIA

 5th Department – Technological Ministry of Defence
CZECH REPUBLIC Research Central Registry for EU and

LOM PRAHA s. p. Via XX Settembre 123 NATO
o. z. VTÚLaPVO 00187 Roma Vojkova 55
Mladoboleslavská 944 1000 Ljubljana
PO Box 18 LUXEMBOURG
197 21 Praha 9 See Belgium SPAIN

 SDG TECEN / DGAM
DENMARK NETHERLANDS C/ Arturo Soria 289

Danish Acquisition and Logistics Organization (DALO) Royal Netherlands Military Madrid 28033
Lautrupbjerg 1-5 Academy Library
2750 Ballerup P.O. Box 90.002 TURKEY
 4800 PA Breda Milli Savunma Bakanlığı (MSB)

FRANCE ARGE ve Teknoloji Dairesi
O.N.E.R.A. (ISP) NORWAY Başkanlığı
29, Avenue de la Division Leclerc Norwegian Defence Research 06650 Bakanliklar – Ankara
BP 72, 92322 Châtillon Cedex Establishment
 Attn: Biblioteket UNITED KINGDOM

GERMANY P.O. Box 25 Dstl Knowledge Services
Streitkräfteamt / Abteilung III NO-2007 Kjeller Information Centre
Fachinformationszentrum der Bundeswehr (FIZBw) Building 247
Gorch-Fock-Straße 7 POLAND Dstl Porton Down
D-53229 Bonn Centralny Ośrodek Naukowej Salisbury, Wiltshire SP4 0JQ
 Informacji Wojskowej

GREECE (Point of Contact) Al. Jerozolimskie 97 UNITED STATES
Defence Industry & Research General Directorate 00-909 Warszawa NASA Center for AeroSpace
Research Directorate, Fakinos Base Camp Information (CASI)
S.T.G. 1020 7115 Standard Drive
Holargos, Athens Hanover, MD 21076-1320

SALES AGENCIES
NASA Center for AeroSpace The British Library Document Canada Institute for Scientific and

Information (CASI) Supply Centre Technical Information (CISTI)
7115 Standard Drive Boston Spa, Wetherby National Research Council Acquisitions
Hanover, MD 21076-1320 West Yorkshire LS23 7BQ Montreal Road, Building M-55
UNITED STATES UNITED KINGDOM Ottawa K1A 0S2, CANADA

Requests for RTO or AGARD documents should include the word ‘RTO’ or ‘AGARD’, as appropriate, followed by the serial number (for example
AGARD-AG-315). Collateral information such as title and publication date is desirable. Full bibliographical references and abstracts of RTO and
AGARD publications are given in the following journals:

Scientific and Technical Aerospace Reports (STAR) Government Reports Announcements & Index (GRA&I)
STAR is available on-line at the following uniform resource published by the National Technical Information Service
locator: http://www.sti.nasa.gov/Pubs/star/Star.html Springfield
STAR is published by CASI for the NASA Scientific Virginia 2216
 and Technical Information (STI) Program UNITED STATES
STI Program Office, MS 157A (also available online in the NTIS Bibliographic Database
NASA Langley Research Center or on CD-ROM)
Hampton, Virginia 23681-0001
UNITED STATES

ISBN 978-92-837-0049-4

mailto:mailbox@rta.nato.int
http://www.rto.nato.int/
http://www.sti.nasa.gov/Pubs/star/Star.html

	Cover
	Table of Contents
	Executive Summary
	Synthèse
	Building Robust Systems with Fallible Construction
	Chapter 1 – BACKGROUND AND MOTIVATION
	Chapter 2 – CHANGING CONTEXT: NEW PERSPECTIVES
	2.1 ROBUSTNESS NOT NECESSARILY CORRECTNESS
	2.2 PEOPLE ARE PART OF THE SYSTEM
	2.3 DEPENDABILITY REQUIREMENTS DEPEND ON WHICH STAKEHOLDER
	2.4 AUTOMATED CORRECTION OF FAILURES IS NOT ALWAYS FEASIBLE OR APPROPRIATE
	2.5 AUTONOMIC COMPUTING, I.E. SELF-MANAGED SYSTEMS, HAS A ROLE
	2.6 ROLLBACK IS NOT ALWAYS FEASIBLE OR DESIRABLE
	2.7 SERVICE AVAILABILITY MAY OUTWEIGH CORRECTNESS OF INDIVIDUAL SERVICE REQUESTS
	2.8 SOFTWARE DEVELOPMENT IS NOT A SINGLE HOMOGENEOUS ACTIVITY
	2.9 THE SOFTWARE PRODUCT MAY NOT BE HOMOGENEOUS CODE
	2.10 THE DEVELOPMENT ORGANIZATION MAY NOT BE A HOMOGENEOUS ENTITY
	2.11 MALICIOUS ATTACKS MAY BE AN ESSENTIAL CONCERN
	2.12 FAULT TOLERANCE AWARENESS NEEDS TO BE INGRAINED IN STAKEHOLDERS

	Chapter 3 – CHANGING CONTEXT: IMPACT OF TECHNOLOGY
	3.1 SURFEIT OF COMPUTING CAPACITY
	3.2 AUTONOMIC COMPUTING
	3.3 VIRTUAL MACHINES
	3.4 THE DISCIPLINE OF SOFTWARE ARCHITECTURE
	3.5 SOFTWARE COMPONENT BASED ENGINEERING
	3.6 SYSTEMS OF SYSTEMS
	3.7 WEB AND INTERNET TECHNOLOGIES
	3.8 CONCURRENT, PARALLEL, AND DISTRIBUTED COMPUTING
	3.9 EXCEPTION HANDLING
	3.10 NON-IMPERATIVE PROGRAMMING
	3.11 GENETIC AND MORE GENERALLY EXPLORATORY COMPUTATION
	3.12 MASSIVE DATASETS
	3.13 INADEQUACY OF ORACLES
	3.14 SECURITY AND PRIVACY
	3.15 MULTIMEDIA, ESPECIALLY TIME-BASED STREAMING MEDIA
	3.16 SCALABILITY AND NON-STOP OPERATION
	3.17 RATE OF NEW RELEASES

	Chapter 4 – CONCLUSIONS AND FOLLOW-ON
	Chapter 5 – REFERENCES
	Annex A – REVIEW OF HISTORY OF TASK GROUP
	Annex B – TASK GROUP MEMBERS
	Annex C – PROPOSED RTO TECHNICAL PROGRAMME AND BUDGET 2004
	C.1 BACKGROUND AND JUSTIFICATION (Relevance to NATO)
	C.2 OBJECTIVE(S)
	C.3 TOPICS TO BE COVERED
	C.4 DELIVERABLES AND/OR END PRODUCT
	C.5 TECHNICAL TEAM LEADER AND LEAD NATION
	C.6 NATIONS WILLING TO PARTICIPATE
	C.7 NATIONAL AND/OR NATO RESOURCES NEEDED (Physical and Non-Physical Assets)
	C.8 RTA RESOURCES NEEDED (e.g. Consultant Funding)

	Annex D – TERMS OF REFERENCE
	D.1 ORIGIN
	D.2 OBJECTIVES
	D.3 RESOURCES
	D.4 SECURITY CLASSIFICATION LEVEL
	D.5 PARTICIPATION BY PARTNER NATIONS
	D.6 LIAISONS

	Report Documentation Page

